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Definitions and Notations 1

Let Fq be the finite field of characteristic p and order q = pm.
Let F∗q stands for the multiplicative group in Fq.

Definition 1.
The trace of an element γ in Fq over Fp is equal to

tr(γ) = γ + γp + ...+ γpm−1

The co-trace of an element γ in F∗q is equal to tr(γ−1).

It is well-known that the trace lies in the prime field Fp.
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Definitions and Notations 2

Definition 2.

(Kloosterman sum) For each u ∈ F∗q

K(m)(u) =
∑
x∈F∗

q

ω tr(x+ u
x ),

where ω = e
2πi
p is pth primitive root of unity.
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Definitions and Notations 3

For arbitrary i , j ∈ Fp, we introduce the following notation:

Tij = |{x ∈ F∗q : tr(x) = i , tr(x−1) = j)}|,

i.e. Tij stands for the number of non-zero elements of
Fq with trace i and co-trace j .
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A Statement of the Problem

In this work, we search for an approach to finding out
closed-form formulae for Tij in terms of m and p in the
case of arbitrary characteristic p;

The crucial fact, we make use of, is that according to
the main result of 1969’s work of L. Carlitz if u ∈ F∗p
the Kloosterman sum K(m)(u) is explicitly expressible
in terms of m, q and the sum K(u) 4= K(1)(u).
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Some Necessary Facts 1

Fact 3.

([Carlitz69, Eq. 1.3]) For arbitrary u ∈ F∗p, it holds:

K(m)(u) = (−1)m−121−m
∑

2r≤m

(
m
2r

)
(K(u))m−2r{(K(u))2 − 4q}r
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The Works Prompting Our Study (char = 2)

S. Dodunekov (1986) proved the quasiperfectness of
some classes of double-error correcting codes using
essentially the fact: T01 > 0, if m > 2;

H. Niederreiter (1990) found implicitly a formula for T11
in his efforts to establish an expression for the number
of the binary irreducible polynomials of given degree
with second and next to the last coefficient equal to 1.
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Reducing the Number of Unknowns 1

Proposition 4.

For arbitrary i , j from Fp, it holds:

(a) Tij = Tji ,

and for i ∈ F∗p:
(b) Tij = T1,ij.

In particular, T0i = Ti0 = T10 = T01.
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Reducing the Number of Unknowns 2

Sketch of proof:

The obvious (x−1)−1 = x for any x 6= 0 implies (a);

Claim (b) follows by the fact that the mapping x → x/i permutes
the elements of Fq, and the next easily verifiable relations:

tr(x/i) = tr(x)/i ; tr((x/i)−1) = tr(i x−1) = i tr(x−1).

(Recall that i ∈ F∗p.)

Yuri Borissov An approach to computing the number . . .



Reducing the Number of Unknowns 3

Moreover, based on the fact that the number of elements in Fq
with fixed trace equals q/p, one easily deduces:

T00 = q/p − 1− (p − 1)T01; T01 = T10 = q/p −
p−1∑
j=1

T1j , (1)

i.e, the quantities T00 and T01 can be expressed in terms of the
unknowns T1j , j = 1, . . . ,p − 1.

Our goal will be to find a system of linear equations for T1j .
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Working out a System of Linear Equations 1

For each u ∈ F∗p, we proceed as follows:

K(m)(u) 4=
∑
x∈F∗

q

ωtr(x+ux−1) =

p−1∑
i,j=0

Tijω
i+uj =

T00 +

p−1∑
j=1

T0jω
uj +

p−1∑
i=1

Ti0ω
i +

p−1∑
i,j=1

T1,ijω
i+uj =

T00−2T01 +

p−1∑
s=1

T1s(

p−1∑
i=1

ωi+ us
i ) = T00−2T01 +

p−1∑
s=1

T1sK(us).

(Recall that ω = e
2πi
p .)
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Working out a System of Linear Equations 2

Rewriting the above and using (1) we get:

p−1∑
s=1

[K(us) + p + 1]T1s = K(m)(u) + q + 1, u ∈ F∗p (2)

Note that the RHS can be expressed in terms of K(u),m and q

taking into consideration Carlitz’ result (Fact 3).

As a by-product, if for some p all K(u), u ∈ F∗p are integers then
so are K(m)(u) for any m. In fact, this is a weaker version of the
general property valid for each particular u ∈ F∗p proved e.g. in
[MoiRan07].

Yuri Borissov An approach to computing the number . . .



The Uniqueness of Solution 1

Let g be a generating element of F∗p. Renaming the unknowns

by xl
4
= T1 g l and properly arranging equations (2) one gets a

system of the form:

p−2∑
l=0

k ′s+lxl = K(m)(gs) + q + 1, s = 0, . . . ,p − 2, (3)

where the subscript of k ′s+l
4
= K(gs+l) + p + 1 is taken modulo

p − 1, of course.

Observe that matrix K′ 4= K′(g) of coefficients of system (3)
is a real left-circulant matrix with first row:

[k ′0, k
′
1, . . . , k

′
p−2],

where k ′l = K(g l) + p + 1, l = 0, . . . ,p − 2.
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Definitions and Notations 4

Definition 5.
(see, e.g. [Carmona et al.15])
An n × n matrix A is called a left-circulant matrix if the i−th
row of A is obtained from the first row of A by a left cyclic shift
of i − 1 steps, i.e. the general form of the left-circulant matrix is

A =


a0 a1 a2 ... an−2 an−1
a1 a2 a3 ... an−1 a0
a2 a3 a4 ... a0 a1
. . . . . . . .

an−1a0 a1 ... an−3 an−2

 .

The left-circulant matrices are symmetric and the inverse of an
invertible matrix of this type is again left-circulant.
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Some Necessary Facts 2

Fact 6.

Let A be a left-circulant matrix with first row [a0,a1, . . . ,an−1].
Then:

det A = (−1)
(n−1)(n−2)

2

n−1∏
l=0

f (θl),

where f (x) =
∑n−1

r=0 ar x r and θl , l = 0,1, . . . ,n − 1 are the nth

roots of unity.
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Some Necessary Facts 3

Fact 7.

(see, e.g. [Lehmer67, Eq. 1.9])

p−1∑
u=1

K(u) = 1.
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The Uniqueness of Solution 2

Lemma 8.

det K′ = p2 det K,

where K is the left-circulant matrix having as first row:

[K(1),K(g),K(g2), . . . ,K(gp−2)].
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The Uniqueness of Solution 3

Sketch of proof:

There are two essentially distinct cases to consider in Fact 6:
θ = 1

p−2∑
l=0

k ′l θ
l =

p−2∑
l=0

{K(g l) + p + 1} =

p−2∑
l=0

K(g l) + p2 − 1 =

p2 ∗ 1 = p2
p−2∑
l=0

K(g l)θl

otherwise
p−2∑
l=0

k ′l θ
l =

p−2∑
l=0

{K(g l)θl + (p + 1)θl} =

p−2∑
l=0

K(g l)θl ,

since θ is a nontrivial (p − 1)st root of unity.
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The Uniqueness of Solution 4

Lemma 9.

Let An be an n × n matrix having entries equal to x over its
main diagonal and equal to y outside of the main diagonal.
Then it holds:

∆n
4
= det An = (x − y)n−1{x + (n − 1)y}.

Sketch of proof: By induction on n.
We shall refer to Lemma 9 as to xy -lemma.
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Some Necessary Facts 4

Fact 10.

(see, e.g. [Lehmer67, Eqs. 3.7 and 3.6])

p−1∑
u=1

K2(u) = p2 − p − 1,

and for any c 6= 1 in F∗p:

p−1∑
u=1

K(u)K(cu) = −p − 1
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The Uniqueness of Solution 5

Proposition 11.

| det K| = pp−2

Sketch of proof:

Using Fact 10, one shows that the matrix A = K2 satisfies the
assumptions of xy -lemma with x = p2 − p − 1 and y = −p − 1.
Thus, det2 K = p2(p−2) .
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The Uniqueness of Solution 6

Finally, we deduce the following:

Corollary 12.
The matrix K′ of coefficients of system (3) is invertible.

Proof.
Indeed, Lemma 8 and Proposition 11 immediately imply:

| det K′| = pp

Remark: It is well-known that linear systems having
circulant coefficient matrix can be solved using discrete
Fourier transform and this approach is much faster than
the standard Gaussian elimination, especially if a FFT is
applied (see, e.g. Davies70).
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Example: char = 2 1

Combining Eq. (2) and Carlitz’ result (see, e.g. Bor16),
we get:

T11 =
1

2m+1

bm/2c∑
r=0

(−1)m+r+1
(

m
2r

)
7r +

2m + 1
4

.

This formula is obtained as a by-product in Nied90 without
making use of Fact 3.
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Example: char = 2 2

Table: Values of Tij for 2 ≤ m ≤ 10

m 2 3 4 5 6 7 8 9 10
T00 1 0 3 10 13 28 71 126 241
T01 0 3 4 5 18 35 56 129 270
T11 2 1 4 11 14 29 72 127 242
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Example: char = 3 1

K(1) = −1; K(2) = 2

det K = −3; det K′ = −27
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Example: char = 3 2

Solving system (2), we get:

T11 =
2K(m)(2)−K(m)(1)

9
+

3m + 1
9

T12 =
2K(m)(1)−K(m)(2)

9
+

3m + 1
9

,

and finally Carlitz’ result can be applied.
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Example: char = 3 3

Table: Values of K (m)(u) for 1 ≤ m ≤ 6,u = 1,2.

m 1 2 3 4 5 6
K (m)(1) −1 5 8 −7 −31 −10
K (m)(2) 2 2 −10 14 2 −46
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Example: char = 3 4

Table: Values of Tij for 1 ≤ m ≤ 6.

m 1 2 3 4 5 6
T00 0 2 2 10 20 68
T01 0 0 3 8 30 87
T11 1 1 0 13 31 72
T12 0 2 6 6 20 84
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Example: char = 5

K(1) =
3−
√

5
2

; K(4) =
3 +
√

5
2

K(2) = −1−
√

5; K(3) = −1 +
√

5

det K = −125; det K′ = −3125

. . .
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Summary

In this talk, we address the problem for enumerating the
number of finite field elements with prescribed trace and
co-trace in case of arbitrary characteristic;

The problem can be reduced to solving a system of linear
equations with matrix of coefficients a slight modification of
circulant matrix formed by the Kloosterman sums. Also,
we prove that system has a unique solution based on deep
properties of those sums;

The approach is illustrated in the cases of characteristic
p = 2,3.

Yuri Borissov An approach to computing the number . . .



Summary

In this talk, we address the problem for enumerating the
number of finite field elements with prescribed trace and
co-trace in case of arbitrary characteristic;

The problem can be reduced to solving a system of linear
equations with matrix of coefficients a slight modification of
circulant matrix formed by the Kloosterman sums. Also,
we prove that system has a unique solution based on deep
properties of those sums;

The approach is illustrated in the cases of characteristic
p = 2,3.

Yuri Borissov An approach to computing the number . . .



Summary

In this talk, we address the problem for enumerating the
number of finite field elements with prescribed trace and
co-trace in case of arbitrary characteristic;

The problem can be reduced to solving a system of linear
equations with matrix of coefficients a slight modification of
circulant matrix formed by the Kloosterman sums. Also,
we prove that system has a unique solution based on deep
properties of those sums;

The approach is illustrated in the cases of characteristic
p = 2,3.

Yuri Borissov An approach to computing the number . . .



Selected References 1

[Lehmer67] D. H. and Emma Lehmer, The cyclotomy of
Kloosterman sums, Acta Arithmetica, XII.4, 385–407 (1967).

[Carlitz69] L. Carlitz, Kloosterman sums and finite field
extensions, Acta Arithmetica, XVI.2, 179–193 (1969).

[Davies70] P. J. Davis, Circulant Matrices, Wiley, New York,
(1970).

[Dodu86] S. Dodunekov, Some quasiperfect double error
correcting codes, Problems of Control and Information Theory,
15.5, 367–375 (1986).

Yuri Borissov An approach to computing the number . . .



Selected References 2

[Nied90] H. Niederreiter, An enumeration formula for certain
irreducible polynomials with an application to the construction
of irreducible polynomials over binary field, AAECC 1,
119–124, (1990).

[MoiRan07] M. Moisio, K. Ranto, Kloosterman sum identities
and low-weight codewords in a cyclic code with two zeros,
Finite Fields and Their Applications 13, 922–935, (2007).

[Carmona et al.15] A. Carmona, et al. The inverses of some
circulant matrices, Applied Mathematics and Computation 270,
785–793 (2015).

[Bor16] Y. Borissov, Enumeration of the elements of GF (2n)
with prescribed trace and co-trace, 7−th European Congress of
Mathematics, TU-Berlin, July 18-22, 2016 (poster).

Yuri Borissov An approach to computing the number . . .



The End
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